Longevity of specific and cross-reactive cellular responses to coronaviruses in comparison to serology in COVID-19 convalescent individuals

Published: 21-05-2021 Last updated: 03-02-2025

SARS-CoV-2 is related to a number of seasonal coronaviruses that have been endemic in humans for decades and usually cause *common cold* symptoms (HCoVs). Several studies have shown that SARS-CoV-2-specific T-cells can be detected in individuals...

Ethical review Approved WMO **Status** Recruiting

Health condition type Viral infectious disorders **Study type** Observational invasive

Summary

ID

NL-OMON57260

Source

ToetsingOnline

Brief title

CoviCross

Condition

Viral infectious disorders

Synonym

coronavirus, COVID-19

Research involving

Human

Sponsors and support

Primary sponsor: Erasmus MC, Universitair Medisch Centrum Rotterdam

1 - Longevity of specific and cross-reactive cellular responses to coronaviruses in ... 24-05-2025

Source(s) of monetary or material Support: TKI-LSH;Health~Holland (public-private partnership). Sponsors van het onderzoek zijn Erasmus MC en Innatoss Laboratories B.V.

Intervention

Keyword: COVID-19, Immunity, Longevity, SARS-CoV-2

Outcome measures

Primary outcome

The main study parameter in this study is the proportion of COVID-19 convalescent individuals with a detectable SARS-CoV-2-specific adaptive immune response (T-cell and antibody responses for various antigens) at different timepoints between year one and two post initial infection.

Secondary outcome

As secondary parameters in this study the quantity, phenotype and activation profile of T-cells specific for SARS-CoV-2 and HCoVs, which will be compared at different times post SARS-CoV-2 infection and vaccination.

Study description

Background summary

SARS-CoV-2 is the causative agent of a pandemic of respiratory tract disease, referred to as coronavirus disease 2019 (COVID-19). Now that several vaccines have become available, we are entering a phase in which it is crucial to understand SARS-CoV-2-specific immunity on the individual and population level. Detection of SARS-CoV-2-specific immune responses relies mostly on antibody testing. However, asymptomatic and mild cases do not always develop detectable antibody levels and specific antibodies may not be long-lived. At the same time, virus-specific T-cell responses appear long-lived, and detectable after asymptomatic infection as well as after recovery from disease. Therefore, detection of SARS-CoV-2-specific T-cells could be a valuable diagnostic marker for prior exposure to SARS-CoV-2.

Study objective

2 - Longevity of specific and cross-reactive cellular responses to coronaviruses in ... 24-05-2025

SARS-CoV-2 is related to a number of seasonal coronaviruses that have been endemic in humans for decades and usually cause *common cold* symptoms (HCoVs). Several studies have shown that SARS-CoV-2-specific T-cells can be detected in individuals never exposed to SARS-CoV-2. This likely reflects the presence of cross-reactive T-cells, i.e. T-cells induced by HCoVs that cross-recognize SARS-CoV-2. To study SARS-CoV-2-specific immunity on the individual and population level, it is of paramount importance that we are able to discriminate between T-cell responses that recognize SARS-CoV-2, HCoVs or both. To this end, we will generate and validate unique discriminatory peptide pools. Using these peptide pools, we will study the longevity of T-cell responses in comparison to antibody responses in a well-defined cohort of convalescent COVID-19 patients from the first wave of the COVID-19 pandemic.

Study design

Observational cohort study

Study burden and risks

The study participants will be asked to provide three blood samples in a period of 12 months (in total 165ml). Venepunctures will be performed by trained phlebotomists and pose a minimal risk. Participation will require three visits of max. 20 minutes each. In addition, individuals will be asked prior to each blood collection time point to answer a short list of questions to capture relevant clinical details on SARS-CoV-2 re-infections and/or vaccination.

Contacts

Public

Erasmus MC, Universitair Medisch Centrum Rotterdam

Dr Molewaterplein 40 Rotterdam 3015GD NI

Scientific

Erasmus MC, Universitair Medisch Centrum Rotterdam

Dr Molewaterplein 40 Rotterdam 3015GD NL

Trial sites

Listed location countries

Netherlands

Eligibility criteria

Age

Adults (18-64 years) Elderly (65 years and older)

Inclusion criteria

- · Aged at least 18 years old
- Self-reported clinical history consistent with COVID-19
- Laboratory-confirmed history of SARS-CoV-2 infection (sero-conversion)

Exclusion criteria

There are no specific criteria for subjects to be excluded from participation in this study, as long as they adhere to the inclusion criteria mentioned above.

Study design

Design

Study type: Observational invasive

Masking: Open (masking not used)

Control: Uncontrolled

Primary purpose: Diagnostic

Recruitment

NL

Recruitment status: Recruiting

Start date (anticipated): 24-05-2021

Enrollment: 100

Type: Actual

Ethics review

Approved WMO

Date: 21-05-2021

Application type: First submission

Review commission: METC Erasmus MC, Universitair Medisch Centrum Rotterdam

(Rotterdam)

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

ID: 25158

Source: Nationaal Trial Register

Title:

In other registers

Register ID

 CCMO
 NL77472.078.21

 OMON
 NL-OMON25158